RISK MANAGEMENT (04) – WIDELY USED METHODS AND TECHNIQUES

Rami.Azulay December 7th, 2019 Posted by Rami Azulay( ) ISO 14971, Requirements Management Tool, RISK Assessment, Risk Management

Do not know what methods can be used for Risk Management? Below is the list of methods widely used for risk management provided by the ISO 14971, ICH Q9, ASPICE Management Process.5, ISO 26262 guideline for quality risk management.

  1.   Preliminary Hazard Analysis (PHA).
  2.   Basic Risk Management Methods.
  3.   Hazard Analysis and Critical Control (HACCP).
  4.   Fault Tree Analysis (FTA).
  5.   Supporting Statistical Tools.
  6.   Failure Mode Effects & Criticality Analysis (FMCEA).
  7.   Risk Ranking &Filtering.
  8.   Hazard Operability Analysis (HAZOP).
  9.   Failure Mode Effects Analysis (FMEA).

Preliminary Hazard Analysis (PHA): This is the first trial in a system safety process. This method is applied to categorize and determine dangers/hazards, related to the operation of a proposed procedure or system

These methods can be used:

  • Early in project making when there is little information on designs or operating procedures.
  • To solve the danger types for the product class, general product type, and the specific product.
  •  Analyze existing systems or prioritize

Basic Risk Management methods: This method is widely used to hasten decisions in failed investigations and Root Cause Analysis.

The features of Basic Risk Management methods are listed below:

  • Cause and Effect Diagrams
  • Check sheets
  • Flowcharts

Hazard Analysis and Critical Control (HACCP): It is a systematic process whereby food is protected from chemical, physical, and biological danger. These dangers will make any finished product unsafe if they are left unchecked during production. Hence, the need for a design process to help reduce the risk. HACCP is useful for the following;

  • Monitoring of critical points in the manufacturing process.
  • Identify and manage risks associated with chemical, physical and biological dangers.
  • When there is a broad understanding of the process as it relates to identifying critical points (critical parameters/ valuables). 

Fault Tree Analysis (FTA): In the safety analysis, system maintainability and reliability, FTA method is widely used. It is a deductive procedure that is often used to identify both human mistakes/errors, and different combinations of software/ hardware failures that could lead to unwanted occurrences known as top events.

FTA can be used to:

  • Establish the pathway to the root cause of this problem.
  • Investigate deviations or complaints to fully understand their root cause.
  • Ensure that intended improvements will fully resolve the issue and not lead to other issues.
  • Evaluate how multiple factors affect a given issue. 

Supporting Statistical Tools: its major functions are:

  • To deal with warning limits or trend analysis.
  • Monitor critical parameters
  • Provide information to determine the process, control, variability, and capability.

Failure Mode Effects & Criticality Analysis (FMECA): It is an extension of the Failure Mode Effects Analysis (FMEA). Criticality analysis is included in the FMECA method that distinguishes it from the FMEA method. It sets the chances of failure modes against the severity of their consequences on a chart.  The FMECA methods are applied to risks and failures associated with the manufacturing process.

FMEA and FMCEA methods require the following information.

  • Recommended Actions.
  • Failure(s).
  • Causes of failure(s).
  • Effects of failure(s).
  • Functions.
  • Item(s).
  • Current Control(s).
  • Any other relevant detail.

Risk Ranking & Filtering: It is one of the easiest methods to use in risk management. 

Other names for this method include:

  • Relative Risk Management.
  • Risk Indexing.
  • Risk Matrix and filtering.

When there is a lot of complicated risk examples or possible risks in a system. With the help of Risk Ranking and Filtering, the focus can be directed to the critical risks in the system. It functions as follows;

  • To help in situations where the level of risk and its consequences is difficult to be controlled by a single tool.
  • To evaluate both quantitatively-assessed and qualitatively-assessed risks within the same organizational framework.
  • To prioritize manufacturing sites for inspection/adult by regulators or industry. 

Hazard Operability Analysis (HAZOP): It is a systematic approach that examines complicated plans, operations, and procedures. In so doing, companies can find solutions to potential risks to both equipment and personnel. 

It is used for the following;

  • Start a HACCP process.
  • Identify and manage risks associated with equipment and facilities.
  • Identify the operator or user error.
  • Identify and manage risks associated with the manufacturing process.
  • Evaluate process safety hazards.

Failure Mode Effects Analysis (FMEA) Tool: It is a systematic approach for proactively solving process issues. Hence, it will help in identifying when failure will occur and where it will occur.

Therefore, making it easier to determine which failed parts require replacement. FMEA is one of the most popular methods to use in life sciences. It helps with;

  • The monitoring of risk effectiveness.
  • Analysis of a manufacturing process to identify high-risk steps or critical parameters.
  • To prioritize risk.
  • To monitor equipment and facilities.

Quality Risk Assessment Tools Selection.          

Any of the tools highlighted in this post can be used for risk assessment. However, it can be challenging for risk management teams to decide or settle on a suitable risk management tool. To achieve an efficient QRM, it is crucial to consider flexibility in the tool selection process. 

Before choosing a risk management tool, there should be a consideration for the level of risk, the product,

ORCANOS FMEA Settings

and the process. That way you can channel both the tool and effort accordingly. Likewise, it is important to set standards and criteria for the usage of the risk assessment tool.

In the Pharmaceutical industry, the tool most experts use is the Failure Mode Effects Analysis(FMEA).

Conclusion

It is our hope that you have enjoyed our series on the introduction to Quality Risk Management. Also, having gone through this course, you come to appreciate the importance of QRM in a robust Quality Management system. The entire series covers the following;

  • The concept of Quality Risk Management.
  • The source of risk.
  • Where to apply QRM.
  • Regulatory Requirements.
  • The various types of Risk Management Tools.

Orcanos QMS system as well our deisng control includs FMEA software that allows you to implement any of the above techniques.

Reference Links

Risk Management – orcanos FMEA Risk Management Tool
Generate Risk Management File Risk Management (ISO 14971) by Orcanos, based on FDA 2017 Recalls
Orcanos Risk Management – Add Traceability Matrix ALM Requirements Traceability Matrix Tools
10 Reasons why to use EQMS 21 CFR Part 820
Risk Management (01) – Introduction to Quality Risk Management (QRM) Risk MANAGEMENT (02) – THE BENEFITS OF FAILURE MODE AND EFFECT ANALYSIS (FMEA)

 

 

 

 


About the author, Rami Azulay

Rami has over 24 years of experience in various software development and QA roles. Using his extensive knowledge of operations and quality, Rami was a main architect of the Orcanos software back in 2005 and later became Orcanos VP sales & marketing. Rami holds an MSC degree in Computer Sciences.

Orcanos

Contact

8 Tozeret Ha'aretz Street
Tel Aviv, Israel
+972-3-5372561
info@orcanos.com

Copyright © Orcanos, All rights reserved. | Privacy policy | Terms of use